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ABSTRACT 

 

 

LEARNING HEALTH INFORMATION FROM FLOOR SENSOR DATA  

WITHIN A PERVASIVE SMART HOME ENVIRONMENT 

 

Nicholas Brent Burns, Ph.D. 

The University of Texas at Arlington, 2020 

 

Supervising Professor: Gergely Záruba 

Spatial and temporal gait analysis can provide useful measures for determining a personôs 

state of health while also identifying deviations in day-to-day activity. The SmartCare project is a 

multi -discipline health technologies project that aims to provide an unobtrusive and pervasive 

system that provides in-home health monitoring for the elderly. This research work focuses on the 

pressure-sensitive smart floor of the SmartCare project by using an experimental floor to develop 

methods for future use on a floor deployed within a home. 

This work presents a procedure to automatically calibrate a smart floorôs pressure sensors 

without specialized physical effort. The calibration algorithm automatically filters out non-human 

static weight and only retains weight generated by human activity. This technique is designed to 

correctly translate sensor values to kg weight units even when direct independent access to the 

pressure sensors is prohibited and when a shared tile floor sits above the sensor grid. 

Using the calibrated sensor values, machine learning techniques are used to extract 

individual contact points on a smart floor generated by a personôs walking cycle. This work 
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presents a three-step process of building and training neural network models of different 

architectures (feedforward, convolutional, and autoencoder) to learn the unique non-linear 

relationship between weight distribution, tile coupling, and physical floor variations.  

Finally, this research work presents a recursive Hierarchical Clustering Analysis algorithm 

that uses the individual contact points generated by the floor model to extract individual footfalls 

of a person during a walking cycle. The footfall clusters are further grouped and segmented into 

walking sequences. Spatial gait analysis is performed on the resulting footfall clusters within each 

walking sequence to measure a variety of gait parameters. The results of the gait analysis are 

compared to those generated by a high-resolution mat alternative showing comparable results for 

most of the computed gait metrics.  
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1 Overview 

1.1 Introduction 

Advances in medical treatment and technology have increased the average life expectancy 

considerably across the developed world, resulting in a larger elderly population. Falling is a 

significant health risk for those over the age of 65. How well a person walks, and thus their gait 

characteristics, can be a good indicator of how likely they might be to experience a tragic fall in 

the future. Gait analysis also has applications in detecting early signs or diagnosing various 

diseases and conditions [1]. Traditionally gait analysis was performed by a health professional 

visually and in-person with a patient. Advances in computing and sensing technology have 

introduced a more analytical and consistent measurement of how well a person walks. These 

technologies range from high-resolution floor mats, video/image processing, depth camera 

analysis, and wearable sensors. However, these are rarely used in the patientôs home but rather in 

health facilities in a highly controlled environment. Embedded pervasive systems integrated within 

the home of an older individual could offer better insight into their gait characteristics and overall 

health. Not only could these in-home systems detect obvious emergencies, they could offer 

predictive and preventative services to avoid serious health events in the future.  

 The SmartCare project is a multi-discipline health technologies project between the 

Nursing and Computer Science and Engineering departments at the University of Texas at 

Arlington. SmartCare offers an unobtrusive and pervasive system that provides in-home health 

monitoring for the elderly. Using a range of embedded sensing technologies along with hardware, 

software, and communication infrastructure within oneôs home allows continuous health 

monitoring and alleviates the burden on older individuals in providing reliable activity and health 

information to care providers and loved ones. The SmartCare system can provide early diagnosis 
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support for medical professionals, continuous activity monitoring, deviation detection, and self-

management assistance in the form of home automation and medication intake reminders. 

 

1.2 Statement of Contributions 

The specific research in this dissertation is at a system level and includes hardware, 

middleware, system integration, and advanced software aspects to address the question of how to 

measure the quality of oneôs gait in their own home in a non-obtrusive, passive, and effective 

manner. The specific contributions detailed in this dissertation regard smart floor data calibration, 

extraction, and learning.  

The first contribution is an automatic calibration technique for grouped sensors of a smart 

floor that does not require rigid and specific physical effort of an expert technician. Rather, a 

software approach is introduced here that utilizes normal everyday walking data to calibrate the 

undefined units of pressure sensors into known kg units to make all sensors across the entire floor 

uniformly reliable in measuring weight. The calibration technique also automatically detects and 

accounts for non-human static weight that can be filtered out with only human weight and activity 

remaining. Due to the calibrated sensor units not being sensitive to everchanging static weight on 

the floor, this calibration technique is useful for a home fitted with this smart floor where furniture 

and other objects may be rearranged over time. No special accommodations are needed for the 

smart floor within a home; it is treated as a normal unobtrusive tile floor.  

The second contribution is a multi-stage neural network model that extracts single contact 

points from a personôs footfalls using the calibrated sensor units. Even in the low-resolution 

environment of the smart floor (1-sqft sensor spacing) and in the presence of multiple contact 

points for that person or the presence of multiple individuals, the model can accurately extract 
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individual moments of foot contact at any location across the tiled smart floor. The model learns 

and accounts for the unique imperfections associated with shifting and flexing tile movement 

which rests upon the floor sensors. The model learns the non-linear relationships and how weight 

spreads (pressure profiles) across all areas of the smart floor.  

The final contribution is a method to cluster and segment a personôs individual footfalls 

using the modelôs single contact point output data. Using a recursive Hierarchical Clustering 

Analysis (HCA) technique, sequential footfalls are extracted while removing outlier contact points. 

The resulting footfall clusters are further grouped and sorted into walking segments to allow the 

calculation and measurement of various gait parameters of a person. The gait and walking features 

are used to classify and identify different people from one another.  

 

1.3 Outline 

Chapter 2 discusses the current state of in-home healthcare methods and the uniqueness of 

SmartCareôs smart floor while also providing background for key methods and algorithms used 

throughout this dissertation. Chapter 3 provides the details of the SmartCare projectôs sensor-rich 

nursing home apartment. Chapter 4 describes the process of floor sensor calibration. Chapter 5 

discusses the model architecture and procedure for extracting a personôs contact points when 

walking across the smart floor. Chapter 6 details how individual footfalls are clustered over time 

and how the extracted footfalls are used in gait analysis. Chapter 7 compares the accuracy of the 

gait measurements from the low-resolution smart floor against those of a high-resolution walking 

mat and demonstrates a preliminary effort of person identification (classification) using smart floor 

gait data. Chapter 8 summarizes the conclusions of this work and describes how these methods 

could be used in the future for application within the SmartCare apartment.  
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2 BACKGROUND AND RELATED WORK 

2.1 In-Home Healthcare Monitoring and Smart Floors 

Two prominent research projects regarding smart home environments for the elderly are 

ongoing at the University of Missouriôs AgingMO Tiger Place [2] and Washington State 

Universityôs Center for Advanced Studies in Adaptive Systems (CASAS) [3]. These two projects 

have produced gait and activity studies collecting data via personal scoring, video analysis, image 

processing, IR sensors, wearable sensors, motion sensors, and pressure floor mats [4] [5]. 

There are three main tools used to generate data for gait analysis: video recording, wearable 

sensors, and floor sensors. Past studies have used shallow [6] and deep learning [1] [7] [8] 

techniques to extract and learn gait parameters from one or a combination of these three data 

collection methods. In particular, Support Vector Machines, Linear Discriminant Analysis, 

Random Forest, Convolutional Neural Networks, Recurrent Neural Networks, Long Short-Term 

Memory Networks, and Deep Belief Networks have been used in these prior projects. These papers 

offer great insight into clever methods of fusing different data collection mediums to improve the 

accuracy of their modelôs output in detecting gait abnormalities and person identification.  

There are three main technologies used for capturing walking data from a smart floor 

environment: 1) optical and visual, 2) capacitive touch, and 3) pressure measurement. An optical 

method such as GravitySpace extracts detailed location data and movements but does not provide 

pressure information and thus cannot calculate weight or impact forces of a personôs walking 

pattern [9]. While capacitive methods such as SensFloor provide accurate location data with simple 

integration into existing flooring, it also suffers from the lack of pressure and weight sensing [10]. 

Pressure-based smart floors, such as the ASU Pressure Mat Floor, offer high-resolution 1cmx1cm 

data [11]. While the sensing technology can provide detailed information of individual footfalls 
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and walking patterns, it is prohibitively expensive, non-scalable, susceptible to damage, and not 

suitable for deployment over an entire home. A low-resolution pressure-sensitive smart floor such 

as the EMFi floor provides a more reasonable cost by only having a resolution of 30cmx30cm [12] 

[13]. However, due to the flooring structure above the sensing materials and how sensors interact, 

the system cannot resolve center of pressure readings and therefore cannot provide reliable 

measurements of gait and balance analysis. Using a rigid flooring surface can help resolve the need 

for pressure distribution variations required to calculate center of pressures and walking profiles.  

The uniqueness of the SmartCare project, in terms of the floor, is its size, coverage, rigid tile 

surface, and low-cost. Other floor sensor projects either use off-the-shelf high-resolution mats or 

small custom-built smart floors that only exist in labs. Deploying enough high-resolution mats to 

cover the entire area of the SmartCare apartment is cost prohibitive. While the SmartCare floor 

requires specialized knowledge and labor to create and install, the price tag is magnitudes cheaper 

than purchasing enough high-resolution mats to cover an equal amount of space. Also, the large 

sensor-array floor is deployed within an actual living environment, not just a lab solely used for 

experiments. The smart floor captures real-time data of individuals living their normal lives within 

a typical apartment. This helps eliminate or reduce the white coat hypertension effect someone 

may experience if asked to walk on a floor subsection within a lab or health facility while being 

analyzed.  

Initial SmartCare floor research has already began with the works of Suhas Reddy [14] and 

Oluwatosin Oluwadare [15]. Their work involved extracting gait parameters from the smart floor 

for general health monitoring, person identification, and anomaly detection.  
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2.2 Gait Analysis 

Human gait analysis is the study of how a person walks. The repetitive walking pattern a 

person performs for locomotion is referred to as the gait cycle. The gait cycle consists of two 

separate phases: the stance phase and the swing phase [16]. The stance phase contains five actions: 

heel-strike, foot-flat, midstance, heel-off, and toe-off. The swing phase contains four actions: pre-

swing, initial swing, mid-swing, and terminal swing. 

 

 

Figure 2.1: Gait Cycle Phases [17] 

 

From a spatial point of view, gait parameters can be measured that relate to footfall 

locations. A personôs left and right step length, step width, stride length, and foot/step angles can 

be calculated. Also, parameters involving time can be learned such as step time, stride time, step 

speed, and stride speed. These spatial parameters are not easily obtainable when observing a 

personôs gait from the perspective shown in Figure 2.1. Therefore, some type of sensing mat or 

floor is required to accurately capture these gait features.  
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Figure 2.2: Bird's Eye View of Footfalls for Gait Analysis [18] 

 

2.3 Hierarchical Clustering Analysis 

Hierarchical Clustering Analysis (HCA) is an unsupervised method of grouping data points 

into a hierarchy of clusters [19]. HCA investigates the similarity of training samples and their 

features. There are no labels associated with the sample data points and they can be of any 

dimension. HCA is a great tool for inspecting unlabeled data and discovering similarity 

relationships amongst data. An advantage of HCA over another popular clustering method, k-

means, is that it is not required to specify the number of clusters to be found.  

There are two main strategies for HCA: agglomerative and divisive. Agglomerative is the 

ñbottom-upò approach where each data sample begins in its own cluster and throughout the 

algorithm clusters are merged repeatedly until only a single large cluster remains. Divisive is the 

ñtop-downò approach where all samples are grouped within a single cluster at the start and 

throughout the process are split continually until every sample point belongs within its own unique 

cluster. The results of HCA can be viewed in the form of a dendrogram to visually and analytically 

evaluate how training sample points clustered together throughout the procedure.  
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 To determine the similarity between sample points or clusters, a distance metric must be 

specified. Commonly used measures include Euclidean (l2 norm), Manhattan (l1 norm), and Cosine 

distances [20]. 

 

Name Formula 

Euclidean Distance Ὀὃȟὄ  ὥ  ὦ  

Manhattan Distance Ὀὃȟὄ  ȿὥ  ὦȿ 

Cosine Similarity Ὀὃȟὄ  
ὃϽὄ

ȿȿὃȿȿ ȿȿὄȿȿ
 

Table 2-1: Clustering Distance Metrics 

 

Regardless of which distance metric is used to compare data points, a specific method must 

be chosen of how to compare a set of points (cluster) to another, generally referred to as a linkage 

type. Some of the most common methods are single linkage, average linkage, complete linkage, 

and ward linkage [21]. When using single linkage, also called minimum linkage, the distance 

between two clusters is the shortest distance between two data points from the clusters, one from 

each. Using single linkage can result in the chaining of clustered data points. Depending on the 

application, this chaining effect can be beneficial when dealing with sequential temporal data (i.e. 

footstep data). With average linkage, the distance between two clusters is the unweighted mean 

distance of every data point from one cluster to every data point of another. Complete linkage, also 

called maximum linkage, defines the distance between two clusters as the longest distance between 

any two data points in the clusters. Ward linkage aims to minimize the variance within each 

clusterôs set of points; how much the set of points vary from the mean of the cluster. 
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Figure 2.3: Different HCA Linkage Criteria 

 

 When HCA is performed, the entire linkage or distance matrix is computed. When viewing 

the resulting hierarchy, it is up to the individual to decide how many clusters best represent the 

desired result. When viewing the results through a dendrogram plot, a horizontal ñcutò along the 

tree can be made at any height giving a potential cluster range of n to 2. With agglomerative, 

bottom-up clustering, any cluster merges above the cut line are ignored while only retaining the 

clusters formed below. The decision of where to place this cut line can be handcrafted or based off 

some strict automatic method. Since HCA is generally used for data exploration, there is not a 

definitive method for deciding where the ñbest cutò should be placed. A common method, when 

visualizing the linkage matrix as a dendrogram, is to find the max vertical distance between any 

cluster merger throughout the entire hierarchy. The middle y-axis value is found within the vertical 

distance span and becomes the final ñbest cutò line. Figure 2.4 contains a visual example.  

A B 

Single (minimum) Linkage 

A B 

Average Linkage 

A B 

Complete (maximum) Linkage 

A B 

Ward Linkage 

Var(AB) vs Var(A) + Var(B) 
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Figure 2.4: Dendrogram Best Cut Line Resulting in 7 Clusters 

 

Figure 2.5 shows a scatter plot of contact point walking data. The data is not clustered and 

only contains the spatial features of x and y clearly showing six unique footsteps. Using the ñbest 

cutò method described previously, Figure 2.6 andFigure 2.7 show the results of agglomerative 

hierarchical clustering using the Euclidean distance metric on the x and y features with four 

different linkage types: single, average, complete, and Ward. Average, complete, and Ward all 

resulted in two final clusters. Single linkage, in this instance, resulted in the desired six clusters 

due to the chaining effect of joining points and clusters of the shortest distance. If a time feature 

was added for each contact point the single linkage method might perform even more reliably in 

the case of a person walking back to the same location over time.  

 

Threshold 

Cutoff 

Max Vertical 

Distance Between 

Any Merge 
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Figure 2.5: Scatter Plot of Raw Unclustered Contact Points 

 

 

Figure 2.6: Scatter Plots of HCA Cluster Results of Different Linkage Types (color = label) 

 

 

Figure 2.7: Dendrograms of HCA Cluster Results of Different Linkage Types (color = label) 

Single Average 

Complete Ward 

Single Average 

Complete Ward 
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2.4 Moving Average 

Calculating the moving average of temporal data can help smooth out short-term 

fluctuations, spikes, and valleys [22]. By removing this noise, the dataôs general trend can be more 

easily understood. Techniques differ in terms of weighting schemes, window size, and cumulative 

contributions. 

 

2.4.1 Simple Moving Average 

A simple moving average (SMA) or sliding window average computes the unweighted 

mean of n sequential samples, with n being the size of the window. Since all sample values are 

unweighted, they each have an equal contribution to the SMA value. The window can be before, 

after, or equally split about the central value in question. 

ρ

ὲ
ὼ 

 

2.4.2 Exponential Moving Average 

An exponential moving average (EMA) applies a weighting factor and incorporates the 

previously calculated EMA. The value of the weighting or smoothing factor Ŭ determines the 

smoothness of the average trend and how much influence past averages have on the new 

calculation. A higher Ŭ decreases past observation influence faster, while a lower Ŭ allows their 

influence to linger longer and results in a smoother result. Also, a higher Ŭ can allow signal noise 

to have a greater influence. The first EMA calculated is simply the first data sampleôs value. 

 

ὉὓὃN
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Figure 2.8: Different EMA Alpha Smoothing Factors Applied to Noisy Data 
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3 SMARTCARE APARTMENT INFRASTRUCTURE 

3.1 Overview 

The SmartCare apartment is located at Lakewood Village Retirement Community in Fort 

Worth, Texas. The interior has the appearance of a normal apartment with the latest high-end 

appliances and fixtures, but embedded under the floor, in the ceiling, and in the walls are various 

sensing and automation technologies to provide 24/7 health monitoring for the elderly. It is a live-

in laboratory to run various experiments and gather short-term and long-term data. The apartmentôs 

unveiling was in May 2015. 

The apartment infrastructure was designed and constructed under the supervision of Dr. 

Záruba, Dr. Huber, and Dr. Daniel. Throughout this work, Nicholas Burns was instrumentally 

involved in all aspects, including cleaning, construction, product research, hardware and sensor 

installation, software design, and networking which made the smart apartment a reality. 

From the recruitment efforts of Dr. Daniel, residents of the Lakewood Village Retirement 

Community have volunteered to live in our SmartCare apartment. From May 2017 to May 2019 

various single and coupled residents have stayed in our apartment for various lengths of time; 

usually about one month. During these stays we have recorded 24/7 data from the smart floor, IR 

sensors, door sensors, water usage, electricity activity, etc. This semi long-form data will hopefully 

provide insight into building a model of a residentôs activities and learning health information. We 

also had a resident stay twice at our apartment with a significant time gap in between, hopefully 

this data can identify any differences this resident underwent over that period. 
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3.2 Embedded Technologies 

The apartmentôs technologies include a smart pressure-sensitive floor, Z-Wave sensors and 

actuators, home automation devices, high-resolution bed mats, water/electricity monitoring and 

control all fed to a computer system that runs custom-built software to manage the hundreds of 

sensors and data collection. The hardware, software, visualization, and infrastructure details are 

explained in our previous papers [23] [24]. The visualization in [24] was through the hard work of 

Peter Sassaman. 

 

 

Figure 3.1: SmartCare Apartment Interior, Visualization, System Architecture Overview, and Computer Room 
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3.3 Apartment Smart Floor 

 

Figure 3.2: SmartCare Apartment Tile and Floor Sensor Layout 

 

The physical construction of the apartment floor and the lab floor (described in Section 4) 

was completed by Dr. Gergely Záruba, Dr. Manfred Huber, and Nicholas Burns. Embedded 

circuitry, embedded software, middleware software, high-level software, and networking 

connectivity were designed and built by Drs. Záruba and Huber.  

 

 

Figure 3.3: Smart Floor Construction, Hardware, and Wiring 














































































































































