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ABSTRACT

LEARNING HEALTH INFORMATION FROM FLOOR SENSOR DATA

WITHIN A PERVASIVE SMART HOME ENVIRONMENT

Nicholas Brent Burns, Ph.D.

The University of Exas at Arlington, 2020

Supervising Professor: Gergelaruba

Spatialand temporagjait analysiscapr ovi de usef ul measures for
state of healtkwhile alsoidentifying deviations irday-to-day activity.The SmartCare project is a
multi-discipline health technologies project that aims to provide an unobtrusiveeavakipe
system that provides4inome health monitoring for the elderlyhis research work focuses on the
pressuresensitive smart floor of the SmartCare projecubinganexperimental flooto develop
methods for future use on a floor deployed withhroane.

Thisworkpr esents a procedure to automatically
without specialized physical effarThe calibration algorithm automatibafilters out nonRhuman
staticweight and only retains weight generated by humarigc This techniques designed to
correctly translate senswealues to kg weight units even when direct independent access to the
pressure sensorspsohibitedand wha a shared tile floor sits above the sensor grid.

Using the calibrated sensor valuesachine learning techniques are used to extract

individual contact point®n a smart foogener at ed by a pe€elhisworkds wal



presents athreestep processof building and training neural network moded$ different
architectures(feedorward, convolutional, and autoencolleio learn the unique nelmear
relationship between weight distribution, tile coupling, and physical flapations

Finally, thisresearch work presents a recursive Hierarchical Clustering Analysis algorithm
thatuses the individual contact points generated by the floor mtmektractindividual footfalls
of a persorduring a walking cycleThe footfall clusters are further groupeatdasegmented into
walking sequences. Spatial gait analysis is performed on the resulting footfall clusters within each
walking sequence to measure a variety of gait paramétkesresults of the gait analysisear
compared to those generated by a friggdution mat alternativehowing comparable results for

most of the computed gait metrics.
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1 Overview

1.1 Introduction

Advances in medical treatment and technology have increased the average life expectancy
considerably across th#eveloped worldresulting in a larger elderly populatioRalling is a
significant health risk for those over the age of 65. How well a person vaaéshus their gait
characteristicscan be a good indicator of how likely they might be to experietiage fall in
the future. Gait analysis also has applmasi in detecting early signs or diagnosing various
diseases and conditiofit]. Traditionally gait analysis was performed by a health professional
visually and inperson with a patient. Advances in computing and sensing technotgy h
introduced a more analytical and consistent measurement of how well a person walks. These
technol@ies range from highesolution floor mats, video/image processing, depth camera
analysis, and wearable sensors. However, these are rarely used imteerpat6 s home but
health facilities in a highly controlled environment. Embedded pervasitensyitegrated within
the home of an older individual could offer better insight into their gait characteristics and overall
health. Not only could thesm-home systems detect obvious emergendiesy could offer
predictive and preventative servicesatmid serious health events in the future.

The SmartCare project is a mudiscipline health technologies project between the
Nursing and Computer Sciee and Engineering departments at the University of Texas at
Arlington. SmartCareoffers an unobtrusie and pervasiveystem that provides 4home health
monitoringfor the elderlyUsing a range of embedded sensing technol@ioesy with hardware,
software, and communication infrastructurei t hi n oneods h o mehealthl | ows
monitoring and allewdtes the burden on older individuals in providing reliable activity and health

information to care providers and loved onBEse SmartCare system can pow/early diagnosis



support for medical professionals, continuous activity monitoring, deviationtideteand sel

management assistance in the form of home automation and medictti@reminders.

1.2 Statement of Contributions

The specific researchn this dissertationis at a system level and includes hardware,
middleware, system integration, and aglved software aspectsaddress the question of how to
measure the quality of on ebtrssiveg passive, and effective i r
mamer.The specific contributions detailed in this dissertation regard smart floocalédeation,
extraction andlearning.

The first contribution is an automatic calibration technique for grouped sensors of a smart
floor that doesot require rigid andspecific physical effort of mexperttechnician. Rathera
software approacts introduced herg¢hat utilizes normal everyday walking data calibrate the
undefined units of pressure sensors into known kg tmitsake all sensors across the entire floor
uniformly reliable in measuring weighthe calibration technique also autdinally detects and
accounts for nofmuman static weight that céefiltered out with only human weight and activity
remaining.Due to the calibrateslensomnits not being seits/e to everchanging static weight on
the floor, this calibration technique uiseful for a home fitted with this smart floor where furniture
and other objects may be rearranged over tieespecial accommodations are needed for the
smart floor within ehome it is treated as a normal unobtrusive tile floor.

The second contribwin is a multistage neural network model that extracts single contact
points from a ugngthescalibratesd sdnsoounifSeeh in shelow-resolution
environment bthe smart floor (dsgft sensor spacingnd in the presence of multiple cact

points for that person or the presence of multiple individuhés,model can accurately extract



individual moments of foot contact at any location across the tiled smart Tloe model learns
and accounts for the unique imperfections associated shifting and flexing tile movement
which rests upon the floor sensoffie model learns the ndimear relationships anidow weight
spreadgpressure profilesicrossall areaf the smart floor.

Thefinalcont ri bution i s a method to cluster an
usingt he model 6s s i ngldata Usiogha racarsive plierarahnital Glusteripgu t
Analysis (HCA) techniguesequentiafootfallsareextracted while removing oudlir contact points.

The resulting footfall clusters are further grouped and sorted into walking segments to allow the
calculationandmeasuremertf various gait parameters of a persbhe gait and walking features

are used talassify and identify diffenet people fromone another

1.3 Outline

Chapter 2 discusses the current state -bfome healthcare methods and the uniqueness of
Smar t Ca r fo6rsvhils atsa praviding background for key methods and algorithms used
throuchout this dissertation. Chapte 3 provi des the detail sichof the
nursing home apartmenthapter 4 describes the process of floor sensor calibration. Chapter 5
discusses the model architecture and procedure for extractinggape® s ¢ o nwhenc t poi
walking across the smart floor. Chapter 6 details how individual footfalls are clustered over time
and how the extraetifootfalls are used in gait analysis. Chapter 7 compaeeadcuracy of the
gait measurements from the leesolution smart flooagainst hoseof a highresolution walking
matand demonstrates a preliminary effort of person identification (classification) using smart floor
gait data Chapter 8 summarizes the conclusions of this work and describes how thesgsmetho

could be used irhe future for application within the SmartCare apartment.



2 BACKGROUND AND RELATED WORK

2.1 In-Home Healthcare Monitoringnd Smart Floors

Two prominent research projects regarding smart home environments for the elderly are
ongoing at theUniversity of Missour 6 s Agi ng MO [2]Tand ¥ashinBtbnaStaee
Universitydés Center for Advanc[8]dTheSdtwodiojecss i n A
have produced gait and activity studiedexding data via peanal scoring, video analysis, image
processing, IR sensors, wearable sensors, motion sensors, and pressure fldd[5hats

There are three main tools used to generate data fargdytsis: video recording, wearable
sensors, and floor sensors. Past studies have used sh@lland deep learninll] [7] [8]
techniques to extract anddrn gait parameters from one or a combination of these three data
collection methodsIn particular, Support Vector Machines, Linear Discriminant Analysis,
Random Forest, Convolutional Neural NetigrRecurrent Neural Networks, Long Shoerm
Memory Netvorks, and Deep Belief Networkave been used in these prior projettese papers
offer great insight into clever methods of fusing different data collection mediums to improve the
accuracy ofthner model 6s out put i n desbnadertificatiogn. gai t abn

There are three main technologies used for capturing walking data from a smart floor
environment: 1) optical and visual, 2) capacitive touch, and 3) pressure measufenugstical
method such as GravitySpace extracts detailed locdtita and movements but does not provide
pressure information and theannotc al cul at e wei ght or i mpact fo
pattern9]. While capacitivanethods such as SensFloor provide accurate location datamie si
integration into existing flooring, it also suffers from the lack of pressure and weight sgrt§ing
Pressurebased smart floorsuch as the ASU Pressuratloor,offer high-resolutionlcmxlcm

data[11]. While the sensing technology can provide detailed information of individual footfalls



and walking patterns, is prohibitively expensive, noiscalable, susceptible to damagadnot
suitable for deployment over an entire ho¢éow-resoltion pressurasensitive smart floasuch
as the EMFfloor provides a more reasonable cost by only having a resolution of 30cmkBZicm
[13]. However, due to the flooring structure above the sgnsiaterials and how sensors interact,
the system carot resolve center of pressure readings and therefore cannot provide reliable
measurements of gait and balance analysis. Using a rigid flooring surface can help resolve the need
for pressure distributiomariations required to calculate center of pressanglswalking profiles.

The uniquenessf the SmartCare project, in terms of the floor, is its size, coverggetile
surfaceand lowcost.Otherfloor sensor projects either use-ttie-shelf highresolution mats or
small custorrbuilt smart floors tht only exist in labs. Deploying enough higgsolution mats to
cover the entire areaf the SmartCare apartment is cost prohibithhile the SmartCaréoor
requires specialized knowledge and labarreate and install, the price tag is magnitudespsrea
than purchasing enough higésolution mats to covem equal amount of spadsiso, thelarge
sensorfarray floor is deployed within an actual living environment, not just a lab solely used for
expeiments.The smarfloor captures redime data of idividuals living their normal lives within
a typical apartment. This helps eliminate or reduce the white coat hypertension effect someone
may experience if asked to walk on a floor subsection withib @idealth facility while being
analyzed.

Initial SmartCare floor research has already began with the works of Suhas|[R&palyd
Oluwatosin Oluwadargl5]. Their work involved extracting gait ganeters from the smart floor

for general health monitoring, person identification, and anodethction



2.2 Gait Analysis

Human gait analysis is the study of how a person walks.repetitive walking pattern a

person performs for locomotion is referrem as the gait cycleThe gait cycle consists of two

separate phases: the stance phase and the swinglfjasbe stance phase contains five actions:

heetstrike, footflat, midstane, heeloff, and toeoff. The swing phaseontains four actions: pre

swing, initial swing, mieswing, and terminal swing.
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2.3 Hierarchical Clustering Analysis

Hierarchical Clustering Analysis (HCA) is an unsupervised method of grouping data points
into a hierarchy of clustefd9]. HCA investigates the similarity of training samples and their
features.There are no labels associated with saenple data pointand theycan be of any
dimension HCA is a great tool for ispecting unlabeled data and discovering similarity
relationshipsamongst data. An advantage of HCA over another popular clustering mkthod,
means, is that it is not required to specify the number of clusters to be found.

There are two main strategies fdCA: agglomerative and divisive. Agglomerative is the
Abotupdo mpproach where each data sample begi ns
algorithm clusters are merged repeatedly until only a single large cluster reDigisise is the
At -d p wnpproaeh where all samples are grouped within a single clustie adtart and
throughout the process are split continually until every sample point belongs within its own unique
cluster.The results of HCA can be viewed in the form of a dendrogram tallysand analytically

evaluate how training sample points clustetogethethroughout the procedure.



To determine the similarity between sample points or clysaedgstance metric must be
specified Commonly used measures include Euclidgamorm), Manhattar(l. norm), and Cosine

distanceg$20].

Name Formula
Euclidean Distancel ~ © 6f® G o
Manhattan Distance O o SANINAR

Cosine Similarity 0 oM SE'C:ST:;@

Table2-1: Clustering Distance Metrics

Regardlessfavhich distance metric is used to compare data pargpecific method must
be chosen of how to compare a set of points (clustemdthergenerally referred to aslinkage
type. Some of the most common methods are single linkage, average linkagegete linkage,
and ward linkagd21]. When using single linkage, also called minimum linkage, the distance
between two clusters is the shortest distdyeteeentwo data points from the clusters, one from
each.Using sngle linkagecan result in thehainingof clustereddata pointsDepending on the
application, this chaining effect can be beneficial when dealing with sequential temporal data (i.e.
footdep datg. With average linkage, the distance between two clusters isntheighted mean
distance oevery data point from one cluster to every data point of and@loenplete linkage, also
called maximum linkagelefinesthe distance between two clustassthe longest distance between
any two data poing in the clustersWard linkage aims to minimize the variance within each

cl ust er 0 s;hmsventchtiefset qf points vary from the mean of the cluster.
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Figure2.3: Different HCA Linkage Crited

When HCA is performedhe entire linkage or distance matrix is computed. When viewing
the resulting hierarchy, it is up to the individual to decide how many clusters best represent the
desred result. When viewing the results through a dendrogrameploth or i zonwgté ficut
tree can be made at any heigjiting a potential cluster range afto 2. With agglomerative
bottomup clustering,any cluster merges above the cut line arerigaavhile only retaining the
clusters formed belovil.lhe decision of where to place thigt line can be handcrafted or based off
some strict automatic method. Since HCA is generally used for data exploration, there is not a
definitive method for decidinglver e t he fAbest cuto should be pl
visualizing the linkage mak as a dendrogram, is to find the max vertical distance between any
cluster merger throughout the entire hierarchy. The migddbas value is founavithin the vertica

di stance span and b e cBgureX4cdntaies aisua exhmplé.b est cut
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Figure2.4: Dendrogram Best Cut Line Resulting in lu§ers

Figure2.5 shows a scatter plot of contact point walking data. The data is not ctuatete
only contains the spatial featuresxaindy clearly showingsix uniquefootstepsUs i ng t he A b «
cut 0 dndestribedl previoushkigure2.6 and-igure 2.7 show the results of agglomerative
hierarchicalclustering usinghe Euclidean distance metric ¢ime x andy features withfour
different linkage types: single, average, complete, and Wearerage, complete, and Ward all
resulted in two final clusters. Single linkage this instanceresulted in te desired six clusters
due to the chaining effedf joining points and clusters of the shortest distance. If a time feature
was added for each contact point the single linkage method might perform even more reliably in

the case of a person walking backhiie same location over time.
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Figure2.5: Scatter Plot of Raw Unclustered Contact Points
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Figure2.6: Scatter Plots ofiCA Cluster Results of Differdrinkage Types (color = label)
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Figure2.7: Dendrograms ofiCA Cluster Results of Different Linkage Types (color = label)
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2.4 Moving Average

Calculating the moving average of temporal data can help smoathshoriterm
fluctuations, spikes, and vallef&?]. By removing thiswoiset h e demdradrénd can be more
easily understood’echniques differ in terms of weighting schemes, window sizé cumulative

contributions.

2.4.1 Simple Moving Average

A simple maiing average (SMA) or sliding window average computes the unweighted
mean ofn sequential samplesvith n being the size of the window. Since all sample values are
unweighted, they each have aqual contribution to the SMA valu€he window can be before,
after, or equally spliaboutthe central valuen question

p .
- w
€

2.4.2 Exponential Moving Average

An exponential moving average (EMApplies a weighting factand incorporateshe
previously calculated EMAThe value ofthe weighting or smoothingfactor U determines the
smoothness of the average tteand how much influence past averages have on the new
calculation. A highet) decreases past observation influence faster, while a ldakows their
influence to linger longeand resukiin a smoother resulflso, a highetJcan allow signal noise

to have a greater influenc€he first EMA calculated is simply the firstda@mp | eds v al
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Figure2.8: DifferentEMA Alpha Smoothing Factors Applied Moisy Data

13




3 SMARTCARE APARTMENT INFRASTRUCTURE

3.1 Overview

The SmartCare apartment is located at Lakewood Village Retirement Community in Fort
Worth, Texas. The interidnas the appearance of a normal apartment with the latesehdyh
appliances antixtures, but embedded under the floor, in the ceiling, and in the walls are various
sensing and automation technologies to provide 24/7 health monitoring for the eldedylive
in laboratory to run various experiments and gathergbortandlong er m dat a. The ap
unveiling was in May 2015.

The apartment infrastructure was designed and constructed under the supervision of Dr.
Zaruba, Dr. Huber, and Dr. Daniéfhroughout this work, Nicholas Burns was instrumentally
involved in all aspectsncluding cleaning, construction, product research, hardware and sensor
installation, software design, and networking which made the smart apartment a reality.

From the rearitment efforts of Dr. Daniel, residents of the Lakewood Village Retirement
Community have volunteered to live in our SmartCare apartment. From May 2017 to May 2019
various single and coupled residents have stayed in our apartment for various lengttes of ti
usually about one month. During these stays we have recorded 24/7 datadfrenmatt floor, IR
sensors, door sensors, watsageelectricity activity, etc. This semi lorigrm data will hopefully
provide insight i nt o &ctitdsadndleagninghealtioidf@rhation.Wea r e s
also had a resident stay twiceoatr apartment with a significant time gap in between, hopefully

this data can identify any differences this resident underwent over that period.

14



3.2 Embedded Technologies

Theagrt ment 6s t echnol ogtsensitive floar, PWasteesenaorsmma r t
actuators, home automation devices, kigéolution bed mats, watetectricity monitoringand
control all fed toa computer system that runs custtwnlt software to managthe hundreds of
sensors and data collection. The hardware, software, visuatizahd infrastructure details are
explained in our previous papg23] [24]. The visualization ifi24] was through the hard work of

Peter Sassaman.
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Figure3.1: SmartCare Apartment Interior, Visualization, System Architecture Overview, and Computer Room
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3.3 Apartment Smart Floor

Figure3.2: SmartCare Apartment Tile and Fldeensor Layout

The physical construction of the apartment floor and the lab floor (described in Section 4)
was completed by Dr. Gergely Zaruba, Dr. Manfred Huber, and Nicholas Burn®dBeb
circuitry, embedded software, middleware software, téyel sdtware, and networking

connectivity were designed and built by Drs. Zaruba and Huber.

Figure3.3: Smart Floor Construction, Hardwaed Wiring
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